Hal

Никитин Игорь Владимирович

ОБОСНОВАНИЕ ПАРАМЕТРОВ ВСКРЫТИЯ ПОДКАРЬЕРНЫХ ЗАПАСОВ КИМБЕРЛИТОВЫХ МЕСТОРОЖДЕНИЙ РУДОВЫДАЧНЫМИ АВТОУКЛОНАМИ ИЗ КАРЬЕРА

Специальность 2.8.8 – «Геотехнология, горные машины»

Автореферат диссертации на соискание ученой степени кандидата технических наук Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте горного дела Уральского отделения Российской академии наук

Научный руководитель:

Соколов Игорь Владимирович,

доктор технических наук, директор Института горного дела Уральского отделения Российской академии наук (ИГД УрО РАН), г. Екатеринбург

Официальные оппоненты:

Калмыков Вячеслав Николаевич,

доктор технических наук, профессор, профессор кафедры разработки месторождений полезных ископаемых ФГБОУ ВО «Магнитогорский государственный технический университет им. Г.И. Носова», г. Магнитогорск

Неверов Сергей Алексеевич,

доктор технических наук, заведующий лабораторией подземной разработки рудных месторождений Института горного дела им. Н.А. Чинакала Сибирского отделения Российской академии наук (ИГД СО РАН), г. Новосибирск

Ведущая организация:

Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр «Кольский научный центр Российской академии наук» (ФИЦ КНЦ РАН), г. Апатиты

Auf

Защита диссертации состоится «20» февраля 2025 года в 14-00 часов на заседании диссертационного совета 24.2.423.02 на базе ФГБОУ ВО «Уральский государственный горный университет» по адресу: 620144, г. Екатеринбург, ул. Куйбышева, 30, 2-й учебный корпус, ауд. 2142.

С диссертацией можно ознакомиться в научной библиотеке и на сайте ФГБОУ ВО «Уральский государственный горный университет» – https://ursmu.ru/nikitin-igor-vladimirovic

Автореферат диссертации разослан «12» декабря 2024 года.

Ученый секретарь диссертационного совета, доктор технических наук, доцент

А.Е. Пелевин

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. Россия занимает первое место в мире по объему разведанных запасов кимберлита, основная часть которых сосредоточена в коренных месторождениях, расположенных в районах алмазоносной провинции Республики Саха (Якутия). Разработка коренных кимберлитовых месторождений Якутии ведется преимущественно открытым способом до достижения предельных по технико-экономическим условиям глубин. В настоящее время исчерпание потенциала открытой геотехнологии при освоении кимберлитовых трубок «Ботуобинская», «Нюрбинская», «Юбилейная» и других обуславливает необходимость перехода на подземный способ их разработки, эффективность которого во многом зависит от правильного выбора способа и схемы вскрытия.

Анализ и обобщение опыта комбинированной разработки кимберлитовых трубок «Интернациональная», «Мир», «Айхал» и «Удачная» показал, что вскрытие подкарьерных запасов, как правило, производилось двумя или тремя вертикальными стволами с поверхности на глубину нескольких этажей без использования или с частичным использованием карьерного пространства для вспомогательных целей. Для данного способа и схемы вскрытия характерны высокая трудоемкость и большие объемы горно-капитальных работ, низкие скорости проходки, что обуславливает повышенные капитальные затраты и значительные сроки строительства подземных рудников (до 15 лет) и зачастую приводит к образованию разрывов в добыче руды при переходе от открытых на подземные горные работы.

Особенностью комбинированной разработки кимберлитовых месторождений является наличие глубоких карьеров (от 320 до 720 м) с малыми размерами в плане и значительная глубина распространения запасов под их дном (до 400 м). Использование карьера не только для строительства подземных вскрывающих выработок, но и для выдачи руды на поверхность, с организацией поэтапного вскрытия подкарьерных запасов на основе применения рудовыдачных автоуклонов позволяет в полной мере реализовать преимущества комбинированной геотехнологии.

Таким образом, изыскание эффективных схем поэтапного вскрытия подкарьерных запасов кимберлитовых месторождений рудовыдачными автоуклонами из карьера, обеспечивающих снижение затрат на вскрытие и сокращение сроков строительства подземного рудника, с обоснованием их оптимальных параметров является актуальной научно-практической задачей.

Целью работы является обоснование параметров вскрытия подкарьерных запасов кимберлитовых месторождений рудовыдачными автоуклонами из карьера, обеспечивающих снижение капитальных и эксплуатационных затрат на вскрытие и сокращение сроков строительства подземного рудника.

Идея работы состоит в том, что снижение затрат на вскрытие и сокращение сроков строительства рудника достигается применением схем поэтапного вскрытия рудовыдачными автоуклонами из карьера с использованием его транспортной системы для выдачи руды на поверхность.

Объектом исследования являются способ и схема вскрытия подкарьерных запасов при последовательной схеме комбинированной разработки месторождений, а **предметом исследования** — зависимости технико-экономических показателей от конструктивных и технологических параметров вскрытия с учетом горногеологических и горнотехнических факторов.

Задачи исследования:

- анализ и обобщение практики и теории вскрытия месторождений, осваиваемых комбинированным способом;
- систематизация и конструирование рациональных вариантов вскрытия подкарьерных запасов кимберлитовых месторождений;
- обоснование критерия эффективности, разработка методики оценки и алгоритма выбора вариантов вскрытия подкарьерных запасов кимберлитовых месторождений;
- оптимизация конструктивных и технологических параметров и техникоэкономическая оценка вариантов вскрытия подкарьерных запасов кимберлитовых месторождений;
- разработка рекомендаций по вскрытию подкарьерных запасов кимберлитовых трубок «Нюрбинская» и «Юбилейная».

Методы исследования. Использован комплексный метод исследований, включающий в себя анализ и обобщение теории и практики вскрытия запасов за предельным контуром карьера, метод календарного планирования, расчетно-аналитический метод, метод множественной линейной регрессии, экономикоматематического моделирование и технико-экономическое сравнение вариантов.

Научные положения, выносимые на защиту:

- 1. Способ и схему вскрытия подкарьерных запасов кимберлитовых месторождений целесообразно оценивать критерием минимума суммарных дисконтированных капитальных и эксплуатационных затрат на процессы, связанные со вскрытием, учитывающим совокупный эффект от снижения затрат и сокращения сроков ввода подземного рудника в эксплуатацию.
- 2. Оптимальная глубина заложения рудовыдачного автоуклона в карьере при вскрытии автоуклонами всех подкарьерных запасов кимберлитовых месторождений определяется углом сдвижения вмещающих пород и генеральным углом наклона бортов карьера, при вскрытии только верхнего подкарьерного этажа минимумом суммарных затрат на транспортирование руды на поверхность подземными и карьерными автосамосвалами и составляет $0.63\ H_{\rm K}$ (где $H_{\rm K}$ глубина карьера).
- 3. Применение схем поэтапного вскрытия подкарьерных запасов кимберлитовых месторождений рудовыдачными автоуклонами из карьера при производственной мощности подземного рудника до 1,0 млн т руды в год и глубине распространения запасов под дном карьера до 400 м обеспечивает сокращение срока строительства рудника в 1,58-2,36 раза и снижение суммарных капитальных и эксплуатационных затрат в 1,09-1,52 раза по сравнению со схемой одноэтапного вскрытия вертикальными стволами с поверхности за счет отказа от скипового ствола и квершлагов или переноса затрат по их проведению на более поздние периоды.

Научная новизна работы:

- предложена систематизация вариантов вскрытия подкарьерных запасов при комбинированной разработке месторождений по признакам, характеризующим способ и схему вскрытия и определяющим объем вскрываемых запасов, величину капитальных вложений и срок строительства рудника, этапность вскрытия, тип и место заложения главных (рудовыдачных) вскрывающих выработок;
- обоснован критерий эффективности вариантов вскрытия, различающихся объемами инвестиций и продолжительностью строительства рудника, минимум суммарных дисконтированных капитальных и эксплуатационных затрат на процессы,

связанные со вскрытием, учитывающий совокупный эффект от снижения затрат и сокращения сроков ввода рудника в эксплуатацию;

- разработана методика определения оптимальной величины первого шага вскрытия и глубины заложения рудовыдачного автоуклона в карьере для вскрытия подкарьерных запасов кимберлитовых месторождений в зависимости от глубины карьера и глубины распространения запасов под дном карьера с учетом границ зоны сдвижения горных пород;
- установлены зависимости суммарных дисконтированных капитальных и эксплуатационных затрат на вскрытие от производственной мощности рудника и глубины распространения запасов под дном карьера, изменяемых в диапазоне 0,5-1,0 млн т/год и 200-400 м, соответственно.

Практическая значимость работы состоит в конструировании рациональных схем поэтапного вскрытия подкарьерных запасов кимберлитовых месторождений рудовыдачными автоуклонами из карьера, определении их оптимальных параметров и области эффективного применения, создании алгоритма и программы для расчета технико-экономических показателей по вариантам вскрытия.

Достоверность научных положений, выводов и результатов обеспечивается представительностью и надежностью исходных данных, применением апробированных методов исследования, оценкой полученных зависимостей методами математической статистики, сходимостью результатов экономико-математического моделирования и проектирования.

Личный вклад автора состоит в анализе и обобщении практики и теории вскрытия месторождений, осваиваемых комбинированным способом, систематизации и конструировании вариантов вскрытия, обосновании критерия эффективности, разработке методики определения оптимальных параметров вскрытия и алгоритма для экономико-математического моделирования, установлении зависимостей, анализе, обработке и обобщении полученных результатов.

Апробация работы. Основные положения диссертации докладывались обсуждались на XIX, XXII и XXV Международном научном симпозиуме «Неделя горняка» (Москва, 2011, 2014, 2017 гг.), VI, VII и IX Международной научнотехнической конференции «Комбинированная геотехнология» (Магнитогорск, 2011, 2013, 2017 гг.), Международной научно-практической конференции «Проблемы и пути эффективной отработки алмазоносных месторождений» (Мирный, 2011 г.), IV, VII и XIII Международной научно-технической конференции «Инновационные геотехнологии при разработке рудных и пластовых месторождений» (Екатеринбург, 2015, 2018, 2024 гг.), III Международном форуме «Эффективность и безопасность горнодобывающей промышленности» (Челябинск, 2017 г.), Международной научнопрактической конференции молодых ученых и студентов «Уральская горная школа – регионам» (Екатеринбург, 2017 г.), V, VI и XVII Всероссийской молодежной научнопрактической конференции «Проблемы недропользования» (Екатеринбург, 2011, 2012, 2023 гг.), XI Уральском горнопромышленном форуме «Технологический суверенитет горного производства» (Екатеринбург, 2023 г.), расширенном заседании горной секции HTC института «Якутнипроалмаз».

Реализация работы. Результаты исследований использованы при разработке технологического регламента вскрытия и отработки Центрального рудного столба месторождения трубки «Юбилейная», ТЭО и технических проектов на отработку запасов нижних горизонтов Малышевского, Урупского и Кыштымского рудников.

Соответствие паспорту научной специальности. Область исследований соответствует паспорту специальности 2.8.8 — «Геотехнология, горные машины» в части пунктов: п. 5 Способы вскрытия шахтных (карьерных) полей, их подготовки, системы разработки, комплексная механизация, технологические процессы добычи твердых полезных ископаемых; п. 12 Организация производства при открытой и подземной разработке месторождений твердых полезных ископаемых и развитие механизации технологических процессов.

Публикации. По теме диссертации всего опубликовано 18 печатных работ, в том числе 1 монография и 8 статей в рецензируемых научных изданиях, входящих в перечень ВАК при Минобрнауки России.

Структура и объем работы. Диссертация состоит из введения, 4 глав и заключения, списка литературы и 4 приложений. Работа изложена на 124 страницах машинописного текста, содержит 24 рисунка, 23 таблицы и список литературы из 125 наименований.

Благодарности. Автор выражает глубокую благодарность д-ру техн. наук И.В. Соколову за научное руководство, канд. техн. наук Ю.Г. Антипину и А.А. Смирнову за полезные советы при проведении исследований и подготовке диссертации.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность исследования, определена цель и поставлены задачи, описаны методы исследования, представлены научные положения, выносимые на защиту, обоснована научная и практическая значимость работы, описан личный вклад автора, апробация и реализация результатов.

В первой главе приведены характеристика и особенности комбинированной разработки коренных кимберлитовых месторождений Якутии, проведен анализ и обобщение мирового опыта и теории вскрытия запасов за предельным контуром карьера, сформулированы цель и задачи исследования.

Разработке научно-методических основ и развитию теории вскрытия запасов при подземной и комбинированной разработке месторождений посвящены труды отечественных и зарубежных ученых: М.И. Агошкова, Л.Д. Шевякова, Д.Р. Каплунова, К.В. Бурмистрова, Ю.В. Волкова, А.С. Воронюка, В.В. Глотова, Л.Е. Зубрилова, Д.М. Казикаева, В.Н. Калмыкова, С.В. Лукичева, М.В. Рыльниковой, И.Н. Савича, И.В. Соколова, В.А. Шестакова, В.А. Щелканова, В.А. Юкова, Ю.Г. Антипина, В.С. Болкисева, Е.В. Громова, Н.А. Ивашова, А.Н. Инфантьева, Е.А. Лобанова, Д.Ю. Минаева, А. Newman, Е. Веп-Аwuah, Е. Вакhtavar и других. В этих работах сформулированы методологические принципы сравнительной оценки способов и схем вскрытия, разработаны методики расчета параметров, предложены классификации, упрощающие процедуру выбора наиболее эффективного варианта. Отмечено, что применение схем вскрытия, основанных на использовании карьерного пространства для размещения в нем подземных вскрывающих выработок, позволяет существенно сократить капитальные затраты и сроки строительства подземного рудника.

Наиболее перспективным решением является использование карьера в качестве рудовыдачной выработки. При этом для транспортирования руды из шахты в карьер в основном используются автоуклоны. Данная схема позволяет не только сократить объем капитальных вложений и сроки строительства подземного рудника, но и снизить эксплуатационные расходы предприятия.

Практика использования автоуклонов в качестве рудовыдачных выработок чаще всего ограничивается периодом перехода от открытых на подземные горные работы, т.е. в пределах верхнего подкарьерного этажа (рудники «Принс-Лайэл» (Австралия), «Элен» (Канада), Чамбиши (Замбия), «Учалинский» (Россия) и др.). Однако известны примеры их использования в течение всего периода доработки месторождений (рудники «Тьюктоник бор» (Австралия), «Люксилахти Виртасальме» (Финляндия), «Камото» (Конго), «Молодежный», «Александринский» и «Сафьяновский» (Россия)). Наибольшее распространение получила комбинация карьерного и подземного автомобильного транспорта с перегрузкой руды с помощью экскаваторов.

В результате анализа установлено, что решение задачи снижения капитальных и эксплуатационных затрат на вскрытие и сокращения сроков строительства подземного рудника с целью недопущения разрыва в добыче руды возможно путем применения схем поэтапного вскрытия рудовыдачными автоуклонами из карьера с использованием его транспортной системы для выдачи руды на поверхность.

Во второй главе установлены и сгруппированы основные параметры и факторы, влияющие на эффективность вскрытия подкарьерных запасов при комбинированной разработке месторождений, систематизированы и сконструированы рациональные варианты вскрытия, обоснован критерий и разработана методика оценки эффективности вариантов вскрытия подкарьерных запасов кимберлитовых месторождений.

В основу исследования положен системный подход, с позиций которого горнотехническая (ΓTC) вскрытия комбинированной система при месторождений рассмотрена как совокупность взаимосвязанных горных выработок, геотехники и технологических процессов, функционирующих в условиях наличия карьерного пространства и обеспечивающих доступ к запасам, предназначенным для подземной разработки, в целях реализации главной (выдача руды на поверхность) и вспомогательных функций (вентиляция, водоотлив, спуск и подъем людей и др.). Объект исследований является сложной динамической системой, состояние которой определяется его структурой (конструктивные, технологические и функциональные параметры) и внешней средой (горно-геологические, горнотехнические, экономические факторы), а оценивается с помощью технико-экономических показателей (ТЭП) и интегрального критерия (рис. 1). Универсальным методом исследования сложных невозможностью систем. отличающихся промышленного или лабораторного эксперимента, является экономико-математическое моделирование (ЭММ).

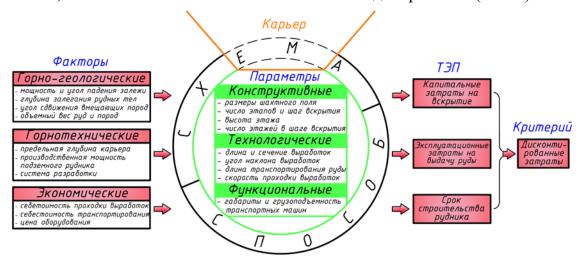


Рисунок 1 – Горнотехническая система вскрытия подкарьерных запасов при комбинированной разработке месторождений

Вскрытие месторождения характеризуется способом и схемой. В понятие способа вскрытия входят тип и число главных вскрывающих выработок. Под схемой вскрытия понимается пространственное расположение различных по назначению вскрывающих выработок и последовательность их проведения. Сочетание способа и схемы вскрытия представляет собой вариант вскрытия.

Анализ условий эксплуатации кимберлитовых месторождений Якутии показал, что угол падения трубки (α), угол сдвижения вмещающих пород (δ), крепость руд и пород (f_p и f_n), объемный вес руд и пород (γ_p и γ_n), генеральный угол наклона бортов карьера (ρ) изменяются незначительно и поэтому приняты детерминированными: $\alpha = 90^\circ$, $\delta = 65^\circ$, $f_p = 2-6$, $f_n = 4-8$, $\gamma_p = \gamma_n = 2,6$ т/м³, $\rho = 50^\circ$. Изменяемыми в широком диапазоне факторами являются:

- горно-геологические: средний диаметр трубки (d=80-200 м), глубина разведанных запасов трубки (H=700-900 м);
- горнотехнические: предельная глубина карьера ($H_{\rm K}=400\text{-}600\,$ м), глубина распространения запасов под дном карьера ($H_{\rm nrp}=200\text{-}400\,$ м), определяемая как разница между H и $H_{\rm K}$, годовая производственная мощность подземного рудника ($A_{\rm mx}=0.5\text{-}1.0\,$ млн т/год), определяемая по горным возможностям в зависимости от d с учетом технологии и организации ведения очистных работ.

Предельные значения факторов представляют собой систему ограничений при ЭММ. Параметрами, в наибольшей степени влияющими на величины ТЭП, являются:

- конструктивные: число этапов (n) и величина шага вскрытия $(H_{\text{вск}})$;
- технологические: площадь поперечного сечения (S), угол наклона (β), глубина заложения (h_3) вскрывающих выработок и длина транспортирования руды ($L_{\text{тр}}$);
 - функциональные: грузоподъемность транспортных машин (Q).

Рассмотрены классификации Д.Р. Каплунова, А.С. Воронюка, Д.М. Казикаева, И.В. Соколова и Н.А. Ивашова, посвященные способам и схемам вскрытия запасов, осваиваемых комбинированным способом. На основании анализа мирового опыта вскрытия и существующих классификаций систематизированы варианты вскрытия подкарьерных запасов при комбинированной разработке месторождений по признакам, характеризующим способ и схему вскрытия и определяющим объем вскрываемых запасов, величину капитальных вложений и срок строительства рудника, — этапность вскрытия, тип и место заложения главных вскрывающих выработок (табл. 1).

Таблица 1 – Систематизация вариантов вскрытия подкарьерных запасов при комбинированной разработке месторождений

Класс	Группа	Подгруппа
	(тип главных вскрывающих выработок)	
(этапность вскрытия)	(тип главных вскрывающих выраооток)	(место заложения
		главных вскрывающих выработок)
I. Одноэтапный	1. Вертикальный скиповой или клетевой ствол	А. Поверхность
(единовременно	2. Наклонный скиповой или конвейерный ствол	Б. Карьер
на полную глубину	3. Автотранспортный уклон	
распространения запасов)		
II. Многоэтапный	1. Вертикальный скиповой или клетевой ствол	А. Поверхность
(очередями на глубину	с последующей углубкой или проходкой	Б. Карьер
шага вскрытия)	слепого ствола	В. Поверхность и карьер
	2. Наклонный скиповой или конвейерный ствол	
	с последующей углубкой	
	3. Автотранспортный уклон с последующей	
	углубкой	
	4. Сочетание различных по типу выработок	
	на разных этапах вскрытия	

В соответствии с систематизацией сконструированы три рациональных варианта вскрытия подкарьерных запасов кимберлитовых месторождений, предусматривающих использование самоходного оборудования (СО) на проходческих и очистных работах и транспортировании руды (рис. 2). Во всех вариантах приняты одинаковыми:

- способ проветривания рудника нагнетательный, схема фланговая;
- схема подготовки добычных блоков кольцевая;
- система разработки камерная с твердеющей закладкой.

Вскрывающие выработки располагаются за возможной зоной сдвижения горных пород от подземной разработки. Строительство подземного рудника предусматривается в период доработки карьера, разрыв в добыче руды не допускается.

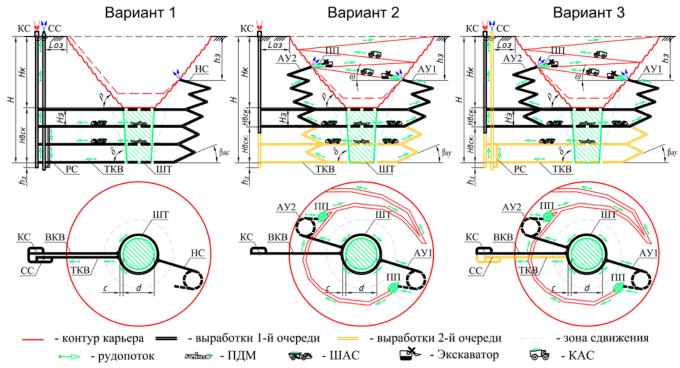


Рисунок 2 — Варианты вскрытия подкарьерных запасов кимберлитовых месторождений: СС — скиповой ствол; КС — клетевой ствол; АУ — автоуклон; НС — вспомогательный наклонный съезд; ТКВ — транспортный квершлаг; ВКВ — вентиляционный квершлаг; ШТ — этажный штрек; РС — капитальный рудоспуск; ПП — перегрузочный пункт

Вскрытие подкарьерных запасов по варианту 1 предусматривается в один этап на полную глубину их распространения, по вариантам 2 и 3 – поэтапно (очередями).

Вариант 1 — одноэтапное вскрытие вертикальными стволами с поверхности. Предусматривает строительство скипового ствола $S_{\text{ств}} = 36,3-47,8$ м² с поверхности для выдачи горной массы и отработанного воздуха из шахты, клетевого ствола $S_{\text{ств}} = 47,8-60,8$ м² с поверхности для спуска-подъема людей и подачи свежего воздуха в шахту, вспомогательного наклонного съезда $S_{\text{нс}} = 14,8-24,5$ м² с площадки карьера под углом $\beta_{\text{нс}} = 10^{\circ}$ для ускоренного строительства горизонтов и спуска СО в шахту, квершлагов и этажных штреков $S_{\text{кв}} = S_{\text{шт}} = 13,6-21,6$ м², капитального рудоспуска в районе скипового ствола $S_{\text{рс}} = 6$ м², а также выработок околоствольных дворов и служебных камер различного назначения (комплекса дробления и загрузки скипов, камеры обслуживания СО и др.). Доставка руды из очистных забоев осуществляется ПДМ $Q_{\text{пдм}} = 7-14$ т. Внутришахтный транспорт руды до капитального рудоспуска — шахтными автосамосвалами (ШАС) $Q_{\text{шас}} = 32-54$ т. Подъем руды на поверхность — по скиповому стволу в скипах $Q_{\text{скип}} = 7-12$ т.

Вариант 2 — многоэтапное вскрытие рудовыдачными автоуклонами из карьера. Предусматривает проходку двух автоуклонов $S_{\rm av}=14,8-24,5~{\rm m}^2$ с площадки карьера под углом $\beta_{\rm av}=8^\circ$ для выдачи горной массы и отработанного воздуха из шахты, спуска СО в шахту, клетевого ствола $S_{\rm ств}=47,8-60,8~{\rm m}^2$ с поверхности для спуска-подъема людей и подачи свежего воздуха в шахту, квершлагов и этажных штреков $S_{\rm кв}=S_{\rm шт}=13,6-21,6~{\rm m}^2$, а также околоствольных выработок. Доставка руды из очистных забоев осуществляется ПДМ $Q_{\rm пдм}=7-14~{\rm t}$. Транспортирование руды по эксплуатационным горизонтам и автоуклонам в карьер производится ШАС $Q_{\rm шас}=32-54~{\rm t}$, на поверхность — по карьерным автосъездам с уклоном $\omega=4,5^\circ$ ($\approx80~\%$) карьерными автосамосвалами (КАС) $Q_{\rm каc}=90-136~{\rm t}$. В карьере оборудуется перегрузочный пункт. Для перегрузки руды используется экскаватор. Вариант 2 по сравнению с вариантом 1 позволяет отказаться от скипового ствола, транспортных квершлагов и рудоспуска, уменьшить глубину клетевого ствола в первом шаге вскрытия и предполагает замену вспомогательного наклонного съезда двумя автоуклонами, используемыми в течение всего периода освоения подкарьерных запасов.

Вариант 3 — многоэтапное вскрытие рудовыдачными автоуклонами из карьера в сочетании с вертикальными стволами с поверхности. Вариант представляет собой комбинацию вариантов 1 и 2: на первом этапе способ и схема вскрытия аналогичны варианту 2, на втором этапе — варианту 1. Вариант 3 по сравнению с вариантом 1 позволяет перенести объемы работ по проходке скипового ствола и транспортных квершлагов на более поздние периоды, уменьшить длину рудоспуска; по сравнению с вариантом 2 позволяет отказаться от одного из автоуклонов во втором шаге вскрытия.

Анализ используемых при выборе вариантов вскрытия оценочных показателей показал, что критерий приведённых затрат не позволяет соизмерить затраты в динамике развития горных работ. Критерий чистого дисконтированного дохода включает показатели – доход от реализации продукции и эксплуатационные затраты на процессы очистной выемки, которые напрямую не связаны со вскрытием и для сравнения вариантов вскрытия представляются излишними, поскольку при одной и той же технологии добычи руды и производственной мощности рудника будут абсолютно равными. Следовательно, для объективной оценки вариантов вскрытия необходимо и достаточно учитывать только затраты, связанные со вскрытием.

Предложено эффективность вариантов вскрытия, различающихся объемами инвестиций и продолжительностью строительства рудника, оценивать по критерию минимума суммарных дисконтированных капитальных и эксплуатационных затрат на процессы, связанные со вскрытием. Целевая функция (ДЗ) имеет вид:

$$\underline{\mathbf{J}}\mathbf{3}_{i} = \sum_{t_{0}}^{T} \left(\mathbf{K}_{it} + \mathbf{9}_{it} \right) \frac{1}{\left(1 + E_{var} \right)^{t}} \to \min, \, \text{руб.}, \tag{1}$$

где i — порядковый номер варианта вскрытия; T — расчетный период, включающий срок строительства ($T_{\rm стр}$) и срок эксплуатации ($T_{\rm эксп}$) подземного рудника, лет; $t_{\rm o}$ — начало расчетного периода; t — расчетный год; K_{it} — годовые капитальные затраты на горно-капитальные работы (ГКР), возведение надшахтных зданий, устройство перегрузочных пунктов в карьере, приобретение проходческого, подъемного и транспортного оборудования, руб.; Θ_{it} — годовые эксплуатационные затраты на поддержание горно-капитальных выработок, транспортирование (включая перегрузку) и подъем руды на поверхность, руб.; $E_{\rm var}$ — переменная норма дисконта, доли ед.

Распределение капитальных вложений по годам осуществляется на основе календарных графиков строительства, эксплуатационных расходов — равномерно исходя из объема вскрываемых запасов и величины $A_{\rm mx}$.

В качестве единого момента дисконтирования ($t_0=0$) принимается начало периода по варианту с максимальным сроком строительства. Смещение начала расчетного периода по варианту с меньшим сроком строительства на величину $t_0=\Delta T_{\rm стр}$ позволяет определять не только величину снижения затрат (традиционный подход), но и эффект от сокращения сроков ввода рудника в эксплуатацию.

Применение E_{var} , уменьшающейся в пределах от 12% до 4% с шагом 0,25% в год, позволяет увеличить горизонт планирования с 30 до 45 лет.

Методика оценки включает расчеты всех видов затрат и состоит из 40 формул, положенных в основу алгоритма, состоящего из 19 операционных блоков (рис. 3), и расчетной программы в приложении $Microsoft\ Excel\$ для определения оптимальных параметров и выбора наиболее эффективного варианта вскрытия подкарьерных запасов кимберлитовых месторождений по критерию ДЗ в зависимости от H, $H_{\rm K}$ и $A_{\rm mix}$.

Совокупность методики, алгоритма и компьютерной программы представляет собой ЭММ вскрытия, которая позволяет прогнозировать изменение ТЭП с учетом интенсивности действия факторов. Адекватность модели подтверждена хорошей сопоставимостью результатов ЭММ и проектных данных по вскрытию подкарьерных запасов трубки «Юбилейная» – расхождение составляет не более 8%.

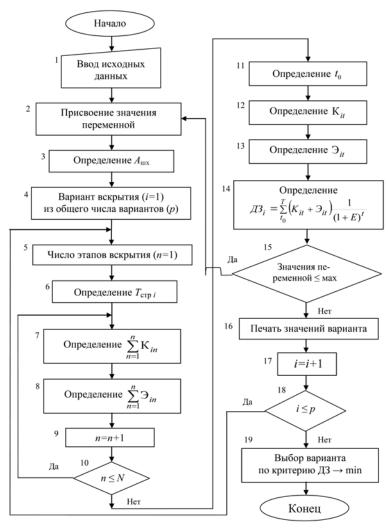


Рисунок 3 — Блок-схема алгоритма выбора варианта вскрытия подкарьерных запасов кимберлитовых месторождений

В третьей главе представлены результаты оптимизации конструктивных и технологических параметров и технико-экономической оценки вариантов вскрытия с учетом влияния горно-геологических и горнотехнических факторов.

Для схем поэтапного вскрытия рудовыдачными автоуклонами из карьера ключевыми конструктивными и технологическими параметрами, обусловленными размерами используемого карьера, являются величина первого шага вскрытия ($H_{\rm вск\ 1}$) и глубина заложения портала рудовыдачного автоуклона в карьере (h_3).

На основе ЭММ для вариантов 2 и 3 установлены оптимальные величины $H_{\text{вск 1}}$ и h_3 в зависимости от $H_{\text{к}}$ при H=800 м и $A_{\text{mx}}=0.75$ млн т/год.

В условиях постоянной H величина $H_{\text{вск 1}}$ оказывает влияние не только на объем ГКР 1-й очереди вскрытия, определяющий величину первоначальных капитальных вложений и срок ввода подземного рудника в эксплуатацию, но и на величину второго шага вскрытия ($H_{\text{вск 2}}$), определяющей объем последующих капитальных затрат.

Оптимальную величину $H_{\rm BCK-1}$ предложено определять показателем минимума дисконтированных суммарных капитальных затрат на ГКР по 1-й и 2-й очередям (ДК $_{\rm ГКD}$)

где $K_{r \kappa p \ 1}$, $K_{r \kappa p \ 2}$ — годовые капитальные затраты на ГКР 1-й очереди и 2-й очереди вскрытия, соответственно, руб.

$$\begin{split} & K_{\text{TKP 1}} = \left[\sum_{j=1}^{J} \left(\frac{H_{\text{K}} - h_{3} + H_{\text{BCK 1}}}{\sin \beta_{\text{ay}}} + \left(\frac{H_{\text{K}} - h_{3}}{\text{tg }\rho} - c \right) \right) S_{\text{ay}} 3_{\text{ay}} + \sum_{g=1}^{G} (H_{\text{K}} + H_{\text{BCK 1}} + h_{\pi}) S_{\text{CTB}} 3_{\text{CTB}} + \right. \\ & + \sum_{g=1}^{G} \left(\frac{H}{\text{tg }\delta} + l_{\text{o3}} - c \right) (m_{1} + 1) S_{\text{KB}} 3_{\text{KB}} + \pi (d + 2c) (m_{1} + 1) S_{\text{IIIT}} 3_{\text{IIIT}} + V_{\text{od}} (m_{1} + 1) 3_{\text{od}} \right] \frac{1}{T_{\text{cTp 1}}}, (3) \\ & K_{\text{TKP 2}} = \left[\sum_{j=1}^{J} \left(\frac{H_{\text{BCK 2}}}{\sin \beta_{\text{ay}}} + \left(\frac{H_{\text{K}} - h_{3}}{\text{tg }\rho} - c \right) \right) S_{\text{ay}} 3_{\text{ay}} + \sum_{g=1}^{G} (H_{\text{K}} + H_{\text{BCK 1}} + H_{\text{BCK 2}}) S_{\text{CTB}} 3_{\text{CTB}} + \right. \\ & + \sum_{g=1}^{G} \left(\frac{H}{\text{tg }\delta} + l_{\text{o3}} - c \right) m_{2} S_{\text{KB}} 3_{\text{KB}} + \pi (d + 2c) m_{2} S_{\text{IIIT}} 3_{\text{IIIT}} + H_{\text{3T}} (m_{2} - 1) S_{\text{pc}} 3_{\text{pc}} + V_{\text{od}} m_{2} 3_{\text{od}} \right] \frac{1}{T_{\text{cTp 2}}}, (4) \end{split}$$

где G, J – число вертикальных стволов и автоуклонов в шаге вскрытия, шт.; d – средний диаметр трубки, м; H – глубина разведанных запасов трубки, м; $H_{\rm K}$ – предельная глубина карьера, м; h_3 – глубина заложения автоуклона в карьере, м; $H_{\rm BCK}$ 1, $H_{\rm BCK}$ 2 – величина первого и второго шагов вскрытия, м; $h_{\rm A}$ – глубина зумпфа ствола, м; $\beta_{\rm av}$ – угол наклона автоуклона, град.; δ – угол сдвижения вмещающих пород, град.; ρ – генеральный угол наклона бортов карьера, град.; $\beta_{\rm av}$ – угол наклона автоуклона, град.; $l_{\rm o3}$ – предохранительная берма от карьера до ствола, м; c – безопасное расстояние от штрека до рудного тела, м; $H_{\rm 9T}$ – высота этажа, м; m_1 , m_2 – число этажей в первом и втором шаге вскрытия, шт.; $S_{\rm CTB}$, $S_{\rm av}$, $S_{\rm KB}$, $S_{\rm шT}$, $S_{\rm pc}$ – площадь поперечного сечения ствола, автоуклона, квершлага, штрека, рудоспуска, м²; $V_{\rm og}$ – объем околоствольных и камерных выработок, м³; $S_{\rm av}$, $S_{\rm kB}$, $S_{\rm шT}$, $S_{\rm pc}$, $S_{\rm og}$ – удельные затраты на проходку (углубку) ствола, автоуклона, квершлага, штрека, рудоспуска, камерных выработок, руб/м³; $T_{\rm ctp}$, $T_{\rm ctp}$, сроки строительства выработок первой и второй очереди, лет.

Оптимальные $H_{\rm вск\ 1}$ определены путем построения графических зависимостей ДК $_{\rm гкр}$ от $H_{\rm вск\ 1}$ при $H_{\rm k}=400\text{-}600$ м с вершинами в точке минимума (рис. 4).

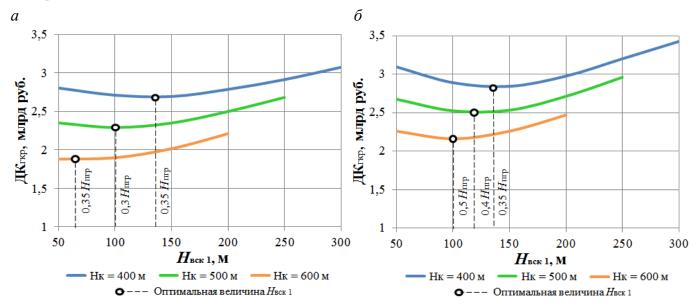


Рисунок 4 — Зависимости дисконтированных капитальных затрат на ГКР ДК_{гкр} от величины первого шага вскрытия $H_{\text{вск 1}}$ и глубины карьера $H_{\text{к}}$: a — вариант 2; δ — вариант 3

Оптимальная $H_{\text{вск 1}}$ определяется уровнем влияния разнонаправленных факторов, таких как сокращение $T_{\text{стр}}$ и $K_{\text{гкр 1}}$ и увеличение $K_{\text{гкр 2}}$.

Установлено, что по варианту 2 оптимальная $H_{\rm BCK~1}$ при $H_{\rm K}=400\text{-}600$ м составляет 140-60 м, что соответствует 0,35-0,3 $H_{\rm IIrp}$, по варианту 3 - 140-100 м, что соответствует 0,5-0,35 $H_{\rm IIrp}$.

Оптимальную величину h_3 предложено определять показателем минимума суммарных годовых эксплуатационных затрат на транспортирование руды ШАС по подземным выработкам от блокового рудоспуска до перегрузочного пункта в карьере и КАС по карьерным автосъездам от перегрузочного пункта в карьере до рудного склада на поверхности ($\Theta_{\rm TP}$)

$$\mathfrak{I}_{\mathrm{Tp}} = \mathfrak{I}_{\mathrm{Tp\,IIIac}} + \mathfrak{I}_{\mathrm{Tp\,Kac}} \to \min, \, \mathrm{py6.}, \tag{5}$$

где $\Theta_{\text{тр шас}}$, $\Theta_{\text{тр кас}}$ – годовые эксплуатационные затраты на транспортирование руды ШАС по подземным выработкам и КАС по карьерным автосъездам, соответственно, руб.

$$\Im_{\text{Tp IIIac}} = L_{\text{Tp IIIac}} C_{\text{Tp IIIac}} A_{\text{IIIX}} = \left(\frac{H_{\text{K}} - h_3 + 0.5H_{\text{BCK}}}{1000 \sin \beta_{\text{ay}}} + \frac{H_{\text{K}} - h_3}{1000 \text{tg } \rho} + \frac{\pi (d + 2c)}{4000} \right) C_{\text{Tp IIIac}} A_{\text{IIIX}},$$
(6)

$$\Theta_{\text{Tp kac}} = L_{\text{Tp kac}} C_{\text{Tp kac}} A_{\text{IIIX}} = \frac{h_3}{1000 \sin(\omega + \omega/12)} C_{\text{Tp kac}} A_{\text{IIIX}}, \qquad (7)$$

где $L_{\text{тр шас}}$, $L_{\text{тр кас}}$ – средняя длина транспортирования руды по подземным выработкам ШАС и карьерным автосъездам КАС, соответственно, км; $H_{\text{вск}}$ – глубина вскрытия автоуклонами (по варианту 2 $H_{\text{вск}} = H - H_{\text{к}}$, по варианту 3 $H_{\text{вск}} = H_{\text{вск}}$ 1), м; ω – продольный уклон карьерного автосъезда, град.; $C_{\text{тр шас}}$, $C_{\text{тр кас}}$ – себестоимость транспортирования руды ШАС и КАС, соответственно, руб/т·км.

Анализ формул (5) — (7) показал, что оптимальная h_3 определяется отношением $L_{\rm Tp~kac}$ / $L_{\rm Tp~mac}$ и $C_{\rm Tp~kac}$ / $C_{\rm Tp~mac}$ при $A_{\rm mx}$ = const. Ограничением является условие размещения автоуклона за зоной сдвижения горных пород, описанное неравенством, учитывающим δ и ρ

$$h_{3 \text{ TEX}} \leq h_{3 \text{ FEOM}} = \left(\left(\frac{H_{K}}{\text{tg } \rho} - \frac{H_{K} + H_{BCK}}{\text{tg } \delta} \right) + \left(\frac{H_{K}}{\text{tg } \rho} - \frac{H_{K} + H_{BCK}}{\text{tg } \delta} \right) \text{tg } \rho \right) \text{tg } \rho,$$
 (8)

где $h_{3 \text{ тех}}$, $h_{3 \text{ геом}}$ – оптимальная по технологическому условию (критерию $\Im_{\text{тр}} \to \min$) и предельная по геомеханическому условию глубина заложения портала автоуклона в карьере, соответственно, м.

Оптимальные $h_{3 \text{ тех}}$ с учетом $h_{3 \text{ геом}}$ определены путем построения графических зависимостей $\Theta_{\text{тр}}$ от h_{3} при $H_{\text{K}} = 400\text{-}600$ м с вершинами в точке минимума (рис. 5).

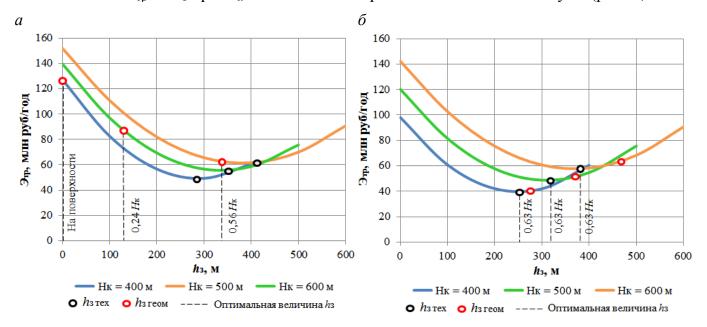


Рисунок 5 — Зависимости эксплуатационных затрат на транспортирование руды $\mathfrak{I}_{\mathsf{тр}}$ от глубины заложения портала автоуклона в карьере h_{3} и глубины карьера H_{K} : a — вариант 2; δ — вариант 3

В рассматриваемых условиях $L_{\rm тр\ kac}$ / $L_{\rm тр\ mac}$ = 1,18-1,58, а $C_{\rm тр\ kac}$ / $C_{\rm тр\ mac}$ = 0,4.

Установлено, что по варианту 2 оптимальная h_3 при $H_{\rm K}=400$ -600 м определяется по геомеханическому условию, поскольку $h_{3\rm\ Tex}>h_{3\rm\ Teom}$, и составляет 0-340 м, что соответствует 0-0,56 $H_{\rm K}$. При этом $L_{\rm Tp\ IIIac}$ находится в диапазоне от 1,93 до 5,63 км, $L_{\rm Tp\ Kac}$ — от 0 до 4,73 км. По варианту 3 оптимальная h_3 при $H_{\rm K}=400$ -600 м определяется по технологическому условию, поскольку $h_{3\rm\ Tex}< h_{3\rm\ Teom}$, и составляет 250-380 м, что соответствует 0,63 $H_{\rm K}$. При этом $L_{\rm Tp\ IIIac}$ находится в диапазоне от 0,52 до 3,22 км, $L_{\rm Tp\ Kac}$ — от 3,48 до 5,28 км.

Выполнена технико-экономическая оценка вариантов 1-3 с установленными оптимальными параметрами и определены области их эффективного применения в зависимости от H, $H_{\rm K}$ и $A_{\rm IIIX}$.

Путем построения календарных графиков (табл. 2) по вариантам 1-3 определены $T_{\rm crp}$ в зависимости от $A_{\rm mx}$ при $H_{\rm k}=400\text{-}600$ м и H=700-900 м (рис. 6).

Таблица 2 – Укрупненный график строительства по вариантам вскрытия 1-3

Наименование	Длина (объем)	Скорость	число	Срок	Годы											
выработок	выработок	стр-ва,	забоев,	стр-ва,												
	1 / 2 очереди,	м/мес.	ШТ.	1 / 2 оч.,	1	2	3	4	5	6	7	8	9	10	11	12
	$M(M^3)$	$(m^3/mec.)$		мес.												
Вариант 1																
Скиповой ствол	970	25	1	39												
Клетевой ствол	940	25	1	38												
Наклонный съезд	4457	70	1	45												
Квершлаги	5216	80	2	33												
Штреки	2669	80	2	17												
Рудоспуск	300	65	1	5												
Околоствольные дворы и камеры	14070	350	4	10												
Всего				102					$T_{\rm crp}$							
Вариант 2																
Автоуклоны	6906 / 4316	70	2	48/31												
Клетевой ствол	640 / 300	25 / 15	1	26 / 20												
Квершлаги	1564 / 1044	80	2	10 / 7												
Штреки	1602 / 1067	80	2	10 / 7												
Околоствольные	2500 / 1700	350	4	2 / 1												
дворы и камеры	2500 / 1700	330	4	2/1				•								_
Всего				48 / 36		$T_{\rm c}$	гр 1								$T_{\text{crp }2}$	
				Вариант	г 3											
Автоуклоны	4028 / 2158	70	2	28 / 15			-									
Скиповой ствол	0 / 970	25	1	0/39												
Клетевой ствол	640 / 300	25 / 15	1	26 / 20												
Квершлаги	1564 / 2088	80	2	10 / 13												
Штреки	1602 / 1067	80	2	10 / 7												
Рудоспуск	0 / 200	65	1	0/3												
Околоствольные дворы и камеры	2500 / 9870	350	4	2/7				•								
Всего																
- выработки 1-й очереди - выработки 2-й очереди																

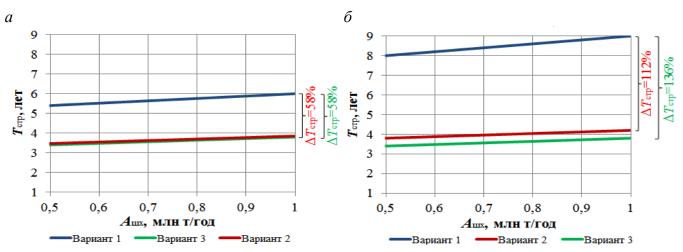


Рисунок 6 — Зависимости сроков ввода рудника в эксплуатацию $T_{\rm стр}$ от производственной мощности подземного рудника $A_{\rm mx}$: a — при $H_{\rm K}$ = 500 м и H = 700 м; δ — при $H_{\rm K}$ = 500 м и H = 900 м

Установлено, что $T_{\rm стp}$ с увеличением $A_{\rm mx}$ растет по всем вариантам на $\approx 15\%$ за счет увеличения длины штреков вследствие увеличения d, а с увеличением H по варианту 1 повышается в 1,5 раза за счет увеличения глубины стволов, длины и количества квершлагов, длины рудоспусков, по варианту 2 — повышается на 20% за счет увеличения длины автоуклонов вследствие уменьшения h_3 , по варианту 3 — не изменяется. Варианты 2 и 3 позволяют сократить $T_{\rm стp}$ в 1,58-2,36 раза (с 5,5-9,0 до 3,5-4,2 лет) по сравнению с вариантом 1 за счет организации поэтапного вскрытия.

Капитальные затраты с увеличением $A_{\text{шх}}$ растут по всем вариантам в 1,3-1,9 раза за счет увеличения вскрывающих выработок, а с увеличением H повышаются в 1,4-1,8 раза за счет увеличения глубины стволов, длины автоуклонов, длины и количества квершлагов и штреков. Вариант 2 позволяет сократить капитальные затраты в 1,1-1,54 раза (380-740 млн руб.) по сравнению с вариантом 1 за счет исключения скипового ствола и транспортных квершлагов. Вариант 3 имеет большие капитальные затраты по сравнению с вариантом 1, но не более чем на 6-10% (140-460 млн руб.), что достигается за счет исключения транспортных квершлагов на первом этапе вскрытия и уменьшения длины автоуклонов вследствие увеличения h_3 .

Эксплуатационные затраты с увеличением $A_{\rm mx}$ растут по всем вариантам в 4,1-5,2 раза за счет увеличения объемов добываемой руды, а с увеличением H повышаются в 1,8-2,2 раза за счет увеличения длины транспортирования. Варианты 2 и 3 имеют большие эксплуатационные затраты по сравнению с вариантом 1, но не более чем на 30-90% (90-340 млн руб.) и 11-60% (60-140 млн руб.), соответственно.

С учетом $T_{\text{стр}}$ построены графические зависимости ДЗ от $A_{\text{шх}}$ при $H_{\text{к}} = 400\text{-}600$ м и H = 700-900 м, на основе которых определены области эффективного применения вариантов 1-3 по критерию ДЗ \rightarrow min (рис. 7).

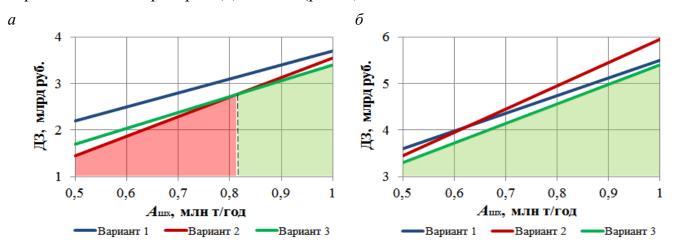


Рисунок 7 — Зависимости суммарных дисконтированных затрат ДЗ от производственной мощности подземного рудника A_{mx} : a — при $H_{\text{\tiny K}} = 500$ м и H = 700 м; δ — при $H_{\text{\tiny K}} = 500$ м и H = 900 м

Графические зависимости ДЗ от H, $H_{\rm K}$ и $A_{\rm mx}$ аппроксимированы методом множественной линейной регрессии. Получены уравнения регрессии, позволяющие с высокой степенью достоверности определять целевой показатель в рассмотренных диапазонах:

$$Д3_2 = 4,6 A_{\text{mx}} + 0,011 H - 0,005 H_{\text{к}} - 6,15, (R^2 = 0,96), \text{ млрд руб.},$$
(10)

Анализ установленных зависимостей позволяет утверждать об экономической эффективности вариантов 2 и 3 во всем исследуемом диапазоне изменения факторов. При этом вариант 2 эффективен при $A_{\text{mix}} \leq 0.8$ млн т/год и $H_{\text{пгр}} \leq 230$ м, вариант 3 — в остальном диапазоне.

Применение схем поэтапного вскрытия подкарьерных запасов кимберлитовых месторождений рудовыдачными автоуклонами из карьера при $A_{\rm mx} \le 1,0$ млн т/год и $H_{\rm nrp} \le 400$ м обеспечивает сокращение сроков строительства рудника в 1,58-2,36 раза (на 2-4,8 года) и снижение суммарных капитальных и эксплуатационных затрат (с учетом дисконтирования) в 1,09-1,52 раза (на 300-750 млн руб.) по сравнению со схемой одноэтапного вскрытия вертикальными стволами с поверхности за счет отказа от скипового ствола и транспортных квершлагов или переноса затрат по их проведению на более поздние периоды.

В четвертой главе разработаны рекомендации по вскрытию подкарьерных запасов кимберлитовых трубок «Нюрбинская» и «Юбилейная».

С использованием созданной ЭММ и установленных зависимостей выполнена проработка и сравнительная оценка рекомендуемых схем поэтапного вскрытия подкарьерных запасов рудовыдачными автоуклонами из карьера — варианта 2 для трубки «Нюрбинская», варианта 3 для трубки «Юбилейная» (рис. 8).

Принятые исходные данные для ЭММ:

- трубка «Нюрбинская»: d = 130 м, H = 750 м, $H_{\rm K} = 570$ м, $A_{\rm mix} = 0.7$ млн т/год;
- трубка «Юбилейная» (центральный рудный столб): $d=175\,$ м, $H=1100\,$ м, $H_{\mbox{\tiny K}}=720\,$ м, $A_{\mbox{\tiny MIX}}=1,0\,$ млн т/год.

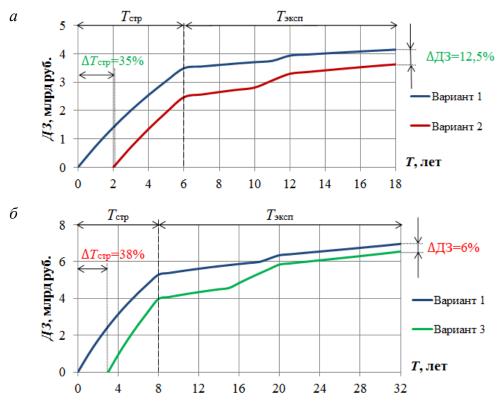


Рисунок 8 — Графики расчета дисконтированных затрат ДЗ при реализации вариантов вскрытия подкарьерных запасов: a — трубки «Нюрбинская»; δ — трубки «Юбилейная»

Потенциальный экономический эффект (дисконтированный) от реализации варианта 2 по сравнению с вариантом 1 в условиях трубки «Нюрбинская» составляет 520 млн руб., варианта 3 в условиях трубки «Юбилейная» — 410 млн руб. Эффект достигается за счет сокращения сроков строительства подземного рудника на 2,1-3 года и переноса части капитальных затрат на более поздние периоды с большим в 2-2,3 раза коэффициентом дисконтирования.

Результаты исследования использованы при разработке ТЭО и технических проектов на отработку запасов нижних горизонтов Малышевского, Урупского и Кыштымского рудников (табл. 3).

Таблица 3 – Сведения о практическом использовании результатов исследования

Рудник	Условия эксплуатации	Способ и схема вскрытия	Расчетный эффект		
Малышевский	Изумрудно-бериллиевое	Поэтапное вскрытие запасов	Сокращение сроков		
	месторождение. Угол	ниже гор120 м с использованием	строительства на 30%		
	падения рудных тел 60-90°,	автоуклона под углом 10°	(27 мес.) и снижение		
	глубина залегания 800 м.	для транспортирования руды	капитальных затрат		
	Производственная мощность	до обогатительной фабрики	на 32% (262 млн руб.)		
	рудника 350 тыс. т/год	на расстояние 4,64 км			
Урупский Медноколчеданное		Поэтапное вскрытие запасов	Сокращение сроков		
	месторождение. Глубина	нижних горизонтов 17-21	ввода новых горизонтов		
	разведанных запасов 850 м.	автоуклоном под углом 8°	на 38% (30 мес.) и		
	Производственная мощность	для транспортирования руды	капитальных затрат		
	рудника 400 тыс. т/год	до вертикального ствола	на 28% (251 млн руб.)		
		на расстояние 0,84 км			
Кыштымский	Жильное месторождение	Поэтапное вскрытие запасов	Сокращение сроков		
	гранулированного кварца	жилы №175 в этаже 346/326 м	ввода новых горизонтов		
	с углом падения 30°.	автоуклоном под углом 10°	на 17% (4 мес.) и		
	Производственная мощность	для транспортирования руды	капитальных затрат		
рудника 25 тыс. т/год до ру		до рудного склада на поверхности	на 8% (26,1 млн руб.)		
		на расстояние 0,93 км.			

ЗАКЛЮЧЕНИЕ

Диссертация является научно-квалификационной работой, в которой содержится решение актуальной научно-практической задачи по обоснованию оптимальных параметров вскрытия подкарьерных запасов кимберлитовых месторождений Якутии рудовыдачными автоуклонами из карьера, обеспечивающих снижение капитальных и эксплуатационных затрат на вскрытие и сокращение сроков строительства подземного рудника, что имеет существенное значение для развития знаний в области подземной и комбинированной разработки месторождений и способствует развитию российской алмазодобывающей промышленности.

Основные научные и практические результаты заключаются в следующем:

- 1. На основе анализа теории и практики вскрытия запасов за предельным контуром карьера определено, что решение задачи сокращения затрат на вскрытие и сроков строительства подземного рудника состоит в применении схем поэтапного вскрытия рудовыдачными автоуклонами из карьера с использованием его транспортной системы для выдачи руды на поверхность.
- 2. Установлены основные параметры, обусловленные размерами используемого карьера, величина первого шага вскрытия и глубина заложения рудовыдачного автоуклона в карьере, и влияющие на них основные факторы диаметр и глубина распространения разведанных запасов трубки, глубина карьера и производственная мощность подземного рудника.
- 3. Систематизированы варианты вскрытия подкарьерных запасов по признакам, характеризующим способ и схему вскрытия и определяющим объем вскрываемых запасов, величину капитальных вложений и срок строительства рудника, этапность вскрытия, тип и место заложения главных (рудовыдачных) вскрывающих выработок.

- 4. В соответствии с систематизацией сконструированы рациональные варианты вскрытия подкарьерных запасов кимберлитовых месторождений, предусматривающие использование самоходного оборудования на проходческих и очистных работах, транспортировании руды и обеспечивающие сокращение сроков строительства рудника за счет заложения автоуклонов в карьере.
- 5. Обоснован критерий эффективности вариантов вскрытия, различающихся объемом инвестиций и продолжительностью строительства рудника, минимум суммарных дисконтированных капитальных и эксплуатационных затрат на процессы, связанные со вскрытием, учитывающий совокупный эффект от снижения затрат и сокращения сроков ввода рудника в эксплуатацию
- 6. Разработана методика определения оптимальной величины первого шага вскрытия и глубины заложения рудовыдачного автоуклона в карьере для вскрытия подкарьерных запасов кимберлитовых месторождений в зависимости от глубины карьера и глубины распространения запасов под дном карьера с учетом границ зоны сдвижения горных пород.
- 7. Составлен алгоритм и соответствующая расчетная компьютерная программа для выбора наиболее эффективного варианта вскрытия по критерию дисконтированных затрат в зависимости от глубины разведанных запасов трубки, глубины карьера и производственной мощности подземного рудника.
- 8. Определена оптимальная величина первого шага вскрытия в зависимости от глубины распространения запасов под дном карьера ($H_{\rm nrp}$), изменяемой в диапазоне 200-400 м: при вскрытии автоуклонами всех подкарьерных запасов составляет 140-60 м, или 0,35-0,3 $H_{\rm nrp}$, при вскрытии только верхнего этажа 140-100 м или 0,5-0,35 $H_{\rm nrp}$.
- 9. Определена оптимальная глубина заложения рудовыдачного автоуклона в карьере в зависимости от глубины карьера ($H_{\rm K}$), изменяемой в диапазоне 400-600 м: при вскрытии автоуклонами всех подкарьерных запасов составляет 0-340 м или 0-0,56 $H_{\rm K}$, при вскрытии только верхнего этажа 250-380 м или 0,63 $H_{\rm K}$.
- 10. Обоснована экономическая эффективность вариантов поэтапного вскрытия рудовыдачными автоуклонами из карьера по сравнению с традиционным вариантом одноэтапного вскрытия вертикальными стволами с поверхности при производственной мощности подземного рудника до 1,0 млн т руды в год и глубине распространения запасов под дном карьера до 400 м.
- 11. Потенциальный экономический эффект (дисконтированный) от реализации вариантов поэтапного вскрытия рудовыдачными автоуклонами из карьера по сравнению с традиционным вариантом одноэтапного вскрытия вертикальными стволами с поверхности в условиях трубки «Нюрбинская» составляет 520 млн руб., трубки «Юбилейная» 410 млн руб.

Основные положения диссертации опубликованы в следующих работах:

Статьи в рецензируемых научных изданиях, входящих в перечень ВАК при Минобрнауки России:

- 1. **Никитин И. В.** Исследование влияния основных факторов на эффективность вскрытия подкарьерных запасов при комбинированной разработке кимберлитовых месторождений // Горный информационно-аналитический бюллетень (научнотехнический журнал). $2011. \mathbb{N} S11. C. 419-428.$
- 3. Соколов И. В., Антипин Ю. Г., **Никитин И. В.** Моделирование и оптимизация способа и схемы вскрытия подкарьерных запасов крутопадающих рудных месторождений // Горный информационно-аналитический бюллетень (научнотехнический журнал). -2014. № 6. С. 190-196.
- 4. Соколов И. В., **Никитин И. В.** Конструирование рациональных вариантов вскрытия подкарьерных запасов кимберлитового месторождения // Горный информационно-аналитический бюллетень (научно-технический журнал). 2015. $N \le S4-2$. С. 147-153.
- 5. Соколов И. В., **Никитин И. В.** Области эффективного применения перспективных способов и схем вскрытия подкарьерных запасов при комбинированной разработке кимберлитовых месторождений // Горный информационно-аналитический бюллетень (научно-технический журнал). 2018. N 4. C. 45-53.
- 6. Соколов И. В., Смирнов А. А., **Никитин И. В.** Методика экономической оценки долгосрочных стратегических решений при комбинированной разработке рудных месторождений // Известия Тульского государственного университета. Науки о Земле. -2021.-N 2.-C.314-325.
- 7. Соколов И. В., **Никитин И. В.** Определение оптимального места расположения автоуклона в карьере при вскрытии подкарьерных запасов кимберлитовых месторождений // Известия высших учебных заведений. Горный журнал. − 2024. − № 2. − С. 42-50.
- 8. **Никитин И. В.** Исследование схем вскрытия подкарьерных запасов кимберлитовых месторождений // Известия Тульского государственного университета. Науки о Земле. 2024. \mathbb{N} 2. C. 262-274.

Монографии:

9. Соколов И. В., Антипин Ю. Г., **Никитин И. В.** Методология выбора подземной геотехнологии при комбинированной разработке рудных месторождений: монография / под общей редакцией д-ра техн. наук И.В. Соколова. — Екатеринбург: Изд-во Урал. ун-та, 2021. — 340 с. ISBN 978-5-7996-3135-2.

Статьи в прочих научных изданиях:

- 10. Соколов И. В., Антипин Ю. Г., **Никитин И. В.** Экономико-математическое моделирование вариантов вскрытия при комбинированной разработке месторождений // Проблемы недропользования: материалы V Всероссийской молодежной научно-практической конференции, 8-11 февраля 2011 г. / ИГД УрО РАН. Екатеринбург: УрО РАН, 2011. С. 204-210.
- 11. Соколов И. В., Смирнов А. А., Антипин Ю. Г., **Никитин И. В.**, Барановский К.В. Вскрытие и технология совместной отработки прибортовых и подкарьерных запасов трубки «Удачная» // Проблемы и пути эффективной отработки алмазоносных месторождений: Международная научно-практическая конференция: сборник докладов. Новосибирск: Наука, 2011. С. 148-153.
- 12. Соколов И. В., Смирнов А. А., **Никитин И. В.** Технико-экономическое сравнение вариантов вскрытия Малышевского месторождения // Комбинированная геотехнология: теория и практика реализации полного цикла комплексного освоения недр: труды международной научно-технической конференции, 23-26 мая 2011 г. Магнитогорск: МГТУ им. Г.И. Носова, 2011. С. 39-44.
- 13. **Никитин И. В.** Методика и алгоритм расчета для экономико-математического моделирования вариантов вскрытия подкарьерных запасов // Проблемы недропользования: материалы VI Всероссийской молодежной научно-практической конференции, 8-10 февраля 2012 г. / ИГД УрО РАН. Екатеринбург: УрО РАН, 2012. С. 151-157.
- 14. **Никитин И. В.** Выбор способа вскрытия и схемы транспорта руды при отработке глубоких горизонтов Урупского подземного рудника // Проблемы недропользования. -2015. -№ 3. C. 50-58.
- 15. **Никитин И. В.** Методы определения параметров и показателей вскрытия подземных запасов рудных месторождений // Уральская горная школа регионам: сборник докладов Международной научно-практической конференции, 24-25 апреля 2017 г. Екатеринбург: УГГУ, 2017. С. 441-442.
- 16. **Никитин И. В.** Оптимизация параметров вскрытия при подземной разработке подкарьерных запасов кимберлитового месторождения // Проблемы недропользования. -2017. № 1 (12). C. 21-28.
- 17. **Никитин И. В.** Эффективность вскрытия нижних горизонтов Ветренского подземного рудника автотранспортным уклоном // Инновационные геотехнологии при разработке рудных и нерудных месторождений: VII международная научнотехническая конференция, 10-11 апреля 2018 г.: сборник докладов. Екатеринбург: Изд-во УГГУ, 2018. С. 90-96.
- 18. Антипин Ю. Г., Смирнов А. А., **Никитин И. В.** Прогноз развития подземной геотехнологии при освоении глубокозалегающих рудных месторождений на период до 2030 года // Проблемы недропользования. − 2021. − № 4 (31). − С. 74-86.